S-ADENOSYLMETHIONINE INHIBITS Ca²⁺ UPTAKE INTO ESCHERICHIA COLI MEMBRANE VESICLES

José M. MATO

Cell Biology and Morphogenesis Unit, Zoological Laboratory, University of Leiden, Leiden, The Netherlands

Received 30 March 1979
Revised version received 19 April 1979

1. Introduction

We have recently observed that the addition of S-adenosylmethionine (SAM) inhibits ATP-dependent 45 Ca $^{2+}$ uptake into Dictyostelium discoideum vesicles (J. M. M., M. Cao, in preparation). Whereas nothing is known about the function of SAM in Dictyostelium, there is a well established relationship between protein methylation and the processing of chemotactic stimuli in bacteria [1]. Further, inverted membrane vesicles isolated from bacteria are known to accumulate 45 Ca $^{2+}$ in the presence of ATP [2,3]. Therefore, we decided to examine the effect of SAM on 45 Ca $^{2+}$ uptake into Escherichia coli vesicles. We show that 1 mM SAM inhibits by \sim 7-fold the uptake of 45 Ca $^{2+}$ into E. coli vesicles prepared by lysis with a French pressure cell.

2. Methods

2.1. Assay of 45 Ca2+ transport

Transport of ⁴⁵Ca²⁺ was essentially measured as in [2]. E. coli BB/13 (10 g) were suspended in a buffer containing 10 mM Tris—HCl (pH 7.2); 0.14 M KCl, 1.2 mM 2-mercaptoethanol and 10% (v/v) glycerol (TKMG buffer). The cells were then lysed by 2 passes through a French pressure cell (Aminco) at 3000—4000 lb/in². Each step of this procedure was performed at 4°C and the homogenate was kept on ice until use. The homogenate was diluted 3 times in 10 mM Tris—HCl (pH 8.5) at 22°C and after incubation for 30 s the transport of ⁴⁵Ca²⁺ was carried out at 22°C in a

1100 μ l reaction volume containing 10 mM Tris—HCl, (pH 8.5), 0.14 M KCl, 5 mM MgCl₂, 1 mM ATP, 10 μ M ⁴⁵Ca²⁺ (0.1 μ Ci ⁴⁵Ca/ml, Amersham) 2 mM potassium phosphate (pH 8.5) and 110 μ l homogenate (~1 mg protein). At various times 200 μ l aliquots were added to 900 μ l terminating ice-cold buffer containing 10 mM Tris—HCl (pH 8.5), 0.14 M KCl and 10 mM CaCl₂. One ml was then filtered on 24 mm filters (0.45 μ m pore size, Schleicher and Schüll) and washed twice with 3 ml terminating solution. The radioactivity of the filters was then measured by liquid scintillation counting. Non-specific ⁴⁵Ca²⁺ binding was measured by carrying out the assay in the presence of a 1000-fold excess of CaCl₂.

2.2. Preparation of membrane vesicles pre-loaded with $^{45}Ca^{2+}$

In another series of experiments, after dilution of the cells lysed in 10 mM Tris-HCl (pH 8.5) the transport of 45Ca2+ was carried out at 22°C in 5 ml reaction volume with the same composition as the above procedure. After a 2 min incubation, 25 ml ice-cold terminating buffer was added and the mixture centrifuged 2 h at 48 000 × g (at 4°C in a SS-34 Sorvall rotor). The pellet was resuspended with a Dounce homogeniser in 8 ml terminating buffer and centrifuged again at 48 000 X g for 2 h at 4°C. The washed pellet was then resuspended with a Dounce homogeniser in 2 ml of the same buffer at 4°C and three 100 µl portions of the mixture filtered on $0.45 \mu m$ filters and after washing twice with 3 ml terminating buffer the radioactivity of the filters was measured. Protein content was determined by the

method in [5]. ATP and SAM were purchased from Boehringer.

3. Results

Accumulation of 45Ca2+ was found to occur in homogenates of E. coli prepared by lysis with a French pressure cell. In the absence of ATP the uptake of 45Ca2+ was 20-30% of that found in its presence. At 1 mM, SAM inhibited by ~6-fold the accumulation of ⁴⁵Ca²⁺ (fig.1a). SAM at 0.1 mM inhibited by only 10-20% and 0.01 mM SAM had no effect on the uptake of 45 Ca2+. When 1 mM SAM was added to a cell homogenate pre-loaded with 45Ca2+ for 1 min, it induced a fast release of radioactivity into the incubation medium (fig.1b). In another series of experiments, lysed E. coli cells were allowed to accumulate 45 Ca2+ for 2 min in the presence or absence of 1 mM SAM. Then, membrane vesicles were isolated by centrifugation as in section 2 and the amount of 45 Ca2+ retained measured. Up to 7-fold more 45 Ca2+ was found in the particles incubated in the absence of SAM (table 1). Transport of 45Ca2+ was also measured in membrane vesicles which were isolated without previous incubation with ⁴⁵Ca²⁺. In

Table 1
Uptake of ⁴⁵Ca²⁺ into E. coli membrane vesicles

Addition	45Ca cpm/mg protein
None	5940
1 mM SAM	840

See section 2 for a description of the procedure

the presence of ATP the transport of ⁴⁵Ca²⁺ by these vesicles was similar in the absence or presence of 1 mM SAM (table 2).

Table 2
Uptake of ⁴⁵Ca²⁺ into E. coli membrane vesicles

Addition	45Ca cpm/mg protein
None	5920
1 mM SAM	6800

After lysis 5 ml E. coli homogenate was diluted with 25 ml ice-cold TKMG buffer and centrifuged 2 h at 48 000 \times g at 4°C. The pellet was resuspended in 8 ml TKMG buffer and centrifuged again at 48 000 \times g for 2 h at 4°C. The pellet was resuspended in 2 ml TKMG buffer, diluted 3 times in 10 mM Tris-HCl (pH 8.5) at 22°C and the transport of 45 Ca 24 measured for 2 min as in section 2

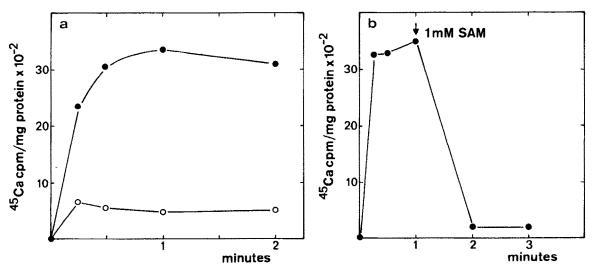


Fig.1. Effect of SAM on 45 Ca²⁺ uptake by *E. coli* homogenates prepared by lysis with a French pressure cell. In a, the uptake of 45 Ca²⁺ was assayed in the absence (•) or presence (•) of 1 mM SAM. In b, 45 Ca²⁺ was allowed to accumulate during 1 min as in section 2. Immediately after the removal of the 1 min sample, SAM (final conc. 1 mM) was added and 1 and 2 min later samples were withdrawn and the 45 Ca²⁺ uptake assayed.

4. Discussion

Bacteria vesicles prepared by lysis with a French pressure cell are believed to be inverted membrane vesicles [2,3]. Such vesicles accumulate ⁴⁵Ca²⁺ in the presence of ATP and the results in vitro might reflect the mechanism that is in vivo responsible for the active efflux of Ca2+ from bacteria cells [2,3]. The present results show that SAM inhibits the uptake of ⁴⁵Ca²⁺ into E. coli vesicles. Because the methylase is a cytoplasmic enzyme, incubations were performed with the crude homogenate rather than with the isolated vesicles. As shown in table 2, isolated E. coli vesicles transported 45 Ca2+ but the addition of SAM had no effect on the accumulation of ⁴⁵Ca²⁺. Whether SAM inhibits Ca²⁺ uptake by making vesicles more permeable to Ca2+ or by an inhibition of Ca2+ transport is not known. In both cases SAM would induce an increase in intracellular Ca2+ by either increasing the diffusion of Ca2+ from the external medium or by inhibition of its efflux.

Bacteria swim smoothly in a straight line for ~ 1 s. then tumble for < 1 s, then swim again in a random direction [5]. When exposed to a sudden increase of attractant tumbling is suppressed and after an adaptation period the normal tumbling frequency is observed again [5]. Methionine is required for the transition from smooth swimming to tumbling, that is for adaptation to increases in the concentration of stimulus [7-9]. The methionine requirement reflects a need for SAM. Chemotactic stimulation has been shown [1] to influence the methylation of an inner membrane protein of about 60 000 daltons (MCP). Evidence which indicates that above a certain cytosolic Ca²⁺ level bacteria tumble continuously is given in [10]. The present results indicate that the function of SAM in vivo might be to increase the intracellular Ca2+ in E. coli. If so, the increase in methylation observed during chemotactic stimulation may induce a transient increase in intracellular Ca2+ which will restore a

normal tumbling frequency. According to the model in [11] for chemotaxis in bacteria, in the presence of a stimulus the levels of an unknown compound, x, increases but must recover to its steady state level soon after stimulation. Thus, a possible function of Ca²⁺ during chemotactic stimulation in bacteria might be to activate the enzyme responsible for restoring the concentration of x to its pre-stimulation steady state level. The fact that SAM also inhibits ⁴⁵Ca²⁺ uptake into D. discoideum vesicles (J. M. M., M. Cao, in preparation) suggests a basic mechanism for this molecule in controlling cellular Ca²⁺ movements.

Acknowledgements

I thank Anneke Talens for introducing me to the French Pressure Cell and Theo Konijn for helpful discussion and encouragement.

References

- [1] Kort, E. N., Goy, M. F., Larsen, S. H. and Adler, J. (1975) Proc. Natl. Acad. Sci. USA 72, 3939-3943.
- [2] Rosen, B. P. and McClees, J. S. (1974) Proc. Natl. Acad. Sci. USA 71, 5042-5046.
- [3] Kobayashi, H., Van Brunt, J. and Harold, F. M. (1978)J. Biol. Chem. 253, 2085-2092.
- [4] Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1961) J. Biol. Chem. 193, 265-275.
- [5] Berg, H. C. and Brown, D. A. (1972) Nature 245, 500-504.
- [6] Macnab, R. M. and Koshland, D. E., jr (1972) Proc. Natl. Acad. Sci. USA 69, 2509-2512.
- [7] Springer, M. S., Kort, E. N., Larsen, S. H., Ordal, G. W., Reader, R. W. and Adler, J. (1975) Proc. Natl. Acad. Sci. USA 72, 4640-4644.
- [8] Aswad, D. and Koshland, D. E., jr (1974) J. Bacteriol. 118, 640-645.
- [9] Springer, M. S., Goy, M. F. and Adler, J. (1977) Proc. Natl. Acad. Sci. USA 74, 183-187.
- [10] Ordal, G. W. (1977) Nature 270, 66-67.
- [11] Koshland, D. E., jr (1977) Science 196, 1055-1063.